Virtual tissue technology reveals new drug target in polycystic kidney disease
Using virtual tissue technology, researchers at Indiana University have identified a potential new drug target in the fight against polycystic kidney disease, an illness with no effective FDA-approved treatment that affects 200,000 people per year in the United States.
The study appears in the journal Molecular Biology of the Cell. It reveals that errors in how cells stick together give rise to two forms of kidney cysts.
These cysts can cause an adult kidney -- normally about the size of a fist and weighing less than a pound -- to grow to the size of a football that weights 20 to 30 pounds. Currently, only dialysis or a kidney transplant can delay death from the disease.
"This is the first study to show the actual cell behaviors caused by mutations in genes causally linked to polycystic kidney disease, an important new step in the path towards treatment," said Dr. Robert L. Bacallao, associate professor of medicine at the IU School of Medicine in Indianapolis.
The technology used in the study was developed by the Biocomplexity Institute at the IU School of Informatics and Computing, directed by James A. Glazier, professor in the IU Bloomington Department of Intelligent Systems Engineering. Julio Belmonte and Sherry G. Clendenon of the Biocomplexity Institute are the primary authors on the paper.
Link to article: https://www.sciencedaily.com/releases/2016/06/160627132816.htm
Comments (0)